Package of functions of the Laboratory of Innovation in Health (InnovaLab) of the Institute of Tropical Medicine βAlexander von Humboldtβ, Universidad Peruana Cayetano Heredia.
π£ 1. Requeriments
library(innovar)
library(sf)
library(rgee)
library(tidyverse)
library(viridis)
library(cowplot)
library(mapview)
ee_Initialize() # edit
ββ rgee 1.1.2.9000 ββββββββββββββββββββββββ earthengine-api 0.1.297 ββ
β user: not_defined
β Initializing Google Earth Engine: DONE!
β Earth Engine account: users/antonybarja8
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
π£ 3. Exploration Peru map
mapview(peru.region,legend = NULL)
π£ 5. Processing data with innovar
peru.ndvi <- peru.ee %>%
get_vegetation(
from = "2018-01-01",
to = "2019-12-31",
band = "NDVI",
fun = "mean")
peru.def <- peru.ee %>%
get_def(
from = "2018-02-01",
to = "2019-12-31"
)
peru.pr <- peru.ee %>%
get_climate(
from = "2018-02-01",
to = "2019-12-31",
by = "month",
band = "pr",
fun = "mean"
)
[1] "Extracting information [0/25]..."
[1] "Extracting information [0/25]..."
[1] "Extracting information [0/25]..."
π£ 6. Processing data for mapping
peru.ndvi.sf <- inner_join(peru.region,peru.ndvi,"dep")
peru.pr.sf <- inner_join(peru.region,peru.pr ,"dep")
peru.def.sf <- inner_join(peru.region,peru.def,"dep")
π£ 7. Exploration data
# peru.ndvi.sf
glimpse(peru.ndvi.sf)
#> Rows: 25
#> Columns: 26
#> $ dep <chr> "AMAZONAS", "ANCASH", "APURIMAC", "AREQUIPA", "AYACUCHO"β¦
#> $ geometry <GEOMETRY [Β°]> POLYGON ((-77.77036 -5.7881..., POLYGON ((-77.3β¦
#> $ `NDVI2018-01` <dbl> 0.7618698, 0.3541663, 0.5611348, 0.1752459, 0.3877662, 0β¦
#> $ `NDVI2018-02` <dbl> 0.7448193, 0.3682141, 0.5148198, 0.1865946, 0.4088631, 0β¦
#> $ `NDVI2018-03` <dbl> 0.8029652, 0.3227369, 0.4254005, 0.1378987, 0.2981394, 0β¦
#> $ `NDVI2018-04` <dbl> 0.7347934, 0.3371762, 0.4594330, 0.1448148, 0.3126478, 0β¦
#> $ `NDVI2018-05` <dbl> 0.7689978, 0.3401211, 0.4600456, 0.1549041, 0.3284372, 0β¦
#> $ `NDVI2018-06` <dbl> 0.7269479, 0.3541572, 0.5168134, 0.2049914, 0.4187075, 0β¦
#> $ `NDVI2018-07` <dbl> 0.8020183, 0.4326799, 0.5730193, 0.2262396, 0.4889410, 0β¦
#> $ `NDVI2018-08` <dbl> 0.8070872, 0.4148736, 0.5476173, 0.2076000, 0.4534685, 0β¦
#> $ `NDVI2018-09` <dbl> 0.8101346, 0.4133105, 0.5284252, 0.1909058, 0.4427989, 0β¦
#> $ `NDVI2018-10` <dbl> 0.8170537, 0.3509110, 0.4392075, 0.1657147, 0.3792495, 0β¦
#> $ `NDVI2018-11` <dbl> 0.8242056, 0.3235377, 0.3881956, 0.1561938, 0.3439301, 0β¦
#> $ `NDVI2018-12` <dbl> 0.7941804, 0.2909917, 0.3439517, 0.1461801, 0.3028986, 0β¦
#> $ `NDVI2019-01` <dbl> 0.7721825, 0.3645026, 0.5550635, 0.2020809, 0.4484064, 0β¦
#> $ `NDVI2019-02` <dbl> 0.7961381, 0.2789325, 0.3385547, 0.1465387, 0.2906443, 0β¦
#> $ `NDVI2019-03` <dbl> 0.7618869, 0.2484661, 0.3389919, 0.1420803, 0.2598204, 0β¦
#> $ `NDVI2019-04` <dbl> 0.7789701, 0.2859070, 0.4143425, 0.1487514, 0.2911723, 0β¦
#> $ `NDVI2019-05` <dbl> 0.7956927, 0.3121799, 0.4847778, 0.1496801, 0.3300418, 0β¦
#> $ `NDVI2019-06` <dbl> 0.8032700, 0.4255341, 0.5458136, 0.1922310, 0.4524076, 0β¦
#> $ `NDVI2019-07` <dbl> 0.7483550, 0.4138269, 0.5001589, 0.1694564, 0.4188638, 0β¦
#> $ `NDVI2019-08` <dbl> 0.8106696, 0.3689997, 0.4170743, 0.1537410, 0.3577194, 0β¦
#> $ `NDVI2019-09` <dbl> 0.7802994, 0.3259332, 0.3905960, 0.1502291, 0.3389899, 0β¦
#> $ `NDVI2019-10` <dbl> 0.8026335, 0.3055392, 0.3811376, 0.1417420, 0.3191863, 0β¦
#> $ `NDVI2019-11` <dbl> 0.7666535, 0.2646288, 0.3565503, 0.1348875, 0.2862325, 0β¦
#> $ `NDVI2019-12` <dbl> 0.7294221, 0.2311107, 0.3716801, 0.1345843, 0.2672917, 0β¦
# peru.pr.sf
glimpse(peru.pr.sf)
#> Rows: 25
#> Columns: 25
#> $ dep <chr> "AMAZONAS", "ANCASH", "APURIMAC", "AREQUIPA", "AYACUCHO", β¦
#> $ geometry <GEOMETRY [Β°]> POLYGON ((-77.77036 -5.7881..., POLYGON ((-77.325β¦
#> $ `pr2018-02` <dbl> 87.0465834, 73.7189378, 207.3803203, 69.8458789, 168.25667β¦
#> $ `pr2018-03` <dbl> 107.5493579, 96.1502156, 186.2385343, 71.8486227, 147.8381β¦
#> $ `pr2018-04` <dbl> 101.7872776, 67.3360464, 63.3649774, 19.4575723, 83.356019β¦
#> $ `pr2018-05` <dbl> 148.628940, 33.222182, 19.758310, 6.849864, 46.346711, 60.β¦
#> $ `pr2018-06` <dbl> 358.2580687, 15.1085579, 44.5938228, 5.8503115, 77.7538876β¦
#> $ `pr2018-07` <dbl> 192.5851479, 19.2629212, 29.5842716, 15.5349233, 65.273883β¦
#> $ `pr2018-08` <dbl> 112.383666, 18.410591, 25.218101, 2.588099, 38.385395, 35.β¦
#> $ `pr2018-09` <dbl> 69.6499857, 31.7195417, 46.7435603, 8.7868353, 123.9690801β¦
#> $ `pr2018-10` <dbl> 322.719653, 94.278051, 88.712101, 18.894828, 95.677431, 56β¦
#> $ `pr2018-11` <dbl> 203.290611, 70.305666, 66.502518, 12.946156, 59.295880, 15β¦
#> $ `pr2018-12` <dbl> 180.3597326, 52.6465738, 97.7328550, 31.5980717, 67.998178β¦
#> $ `pr2019-01` <dbl> 210.409459, 85.551838, 209.236384, 89.596080, 178.053166, β¦
#> $ `pr2019-02` <dbl> 175.003831, 105.491556, 233.468952, 95.274428, 202.714531,β¦
#> $ `pr2019-03` <dbl> 234.7843341, 127.5974202, 191.6842305, 71.7260920, 176.660β¦
#> $ `pr2019-04` <dbl> 212.2099943, 49.7779733, 56.8066528, 18.7805499, 45.388637β¦
#> $ `pr2019-05` <dbl> 206.5401270, 13.4165981, 13.4748249, 3.3185407, 16.5801441β¦
#> $ `pr2019-06` <dbl> 202.3198751, 3.2593835, 3.9852015, 0.4747129, 4.7296860, 4β¦
#> $ `pr2019-07` <dbl> 201.3254233, 4.1375128, 8.2567924, 1.3395482, 8.5875052, 4β¦
#> $ `pr2019-08` <dbl> 101.9690712, 1.1197007, 6.4958554, 0.6039247, 4.1187032, 2β¦
#> $ `pr2019-09` <dbl> 111.7446258, 14.0917587, 20.8372144, 5.5246722, 25.3573550β¦
#> $ `pr2019-10` <dbl> 157.9943562, 39.6498518, 33.1662222, 4.9280120, 25.2767541β¦
#> $ `pr2019-11` <dbl> 214.094409, 60.600451, 96.806961, 18.399584, 56.988385, 11β¦
#> $ `pr2019-12` <dbl> 246.4900612, 80.2156226, 146.1758883, 24.0653149, 87.81586β¦
# peru.def.sf
glimpse(peru.def.sf)
#> Rows: 25
#> Columns: 4
#> $ dep <chr> "AMAZONAS", "ANCASH", "APURIMAC", "AREQUIPA", "AYACUCHO", "Cβ¦
#> $ geometry <GEOMETRY [Β°]> POLYGON ((-77.77036 -5.7881..., POLYGON ((-77.32594β¦
#> $ Adef_2018 <dbl> 314.4862620, 1.6449195, 3.8862691, 0.0656197, 91.9034760, 65β¦
#> $ Adef_2019 <dbl> 216.8205146, 0.9261531, 2.2656311, 0.0198774, 65.4541265, 45β¦
π£ 8. Exploration peru.ndvi.sf map
mapview(
peru.ndvi.sf,
zcol="NDVI2018-01",
layer.name = "NDVI-2018-01"
)
π£ 9. Exploration peru.pr.sf map
mapview(
peru.pr.sf,
zcol="pr2018-02",
layer.name = "pr-2018-02"
)
π£ 10. Exploration peru.def.sf map
mapview(
peru.def.sf,
zcol="Adef_2018",
layer.name = "def-2018"
)
π£ 11. Mapping climate variables with the innovar theme
pr.plot <- peru.pr.sf %>%
ggplot() +
geom_sf(aes(fill=`pr2019-01`)) +
scale_fill_innova(discrete = FALSE,name="Precipitation") +
theme_bw()